Half-inverse problem for diffusion operators on the finite interval
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولThe Inverse Spectral Problem for First OrderSystems on the Half
On the half line 0; 1) we study rst order diierential operators of the form B 1 i d dx + Q(x); where B := B 1 0 0 ?B 2 ; B 1 ; B 2 2 M(n; C) are self{adjoint positive deenite matrices and Q : R + ! M(2n; C); R + := 0; 1); is a continuous self{adjoint oo{diagonal matrix function. We determine the self{adjoint boundary conditions for these operators. We prove that for each such boundary value pro...
متن کاملOn an Inverse Diffusion Problem
In many applications, such as the heat conduction and hydrology, there is a need to recover the (possibly discontinuous) diffusion coefficient a from boundary measurements of solutions of a parabolic equation. The complete inverse problem is ill posed and nonlinear, so numerical solution is quite difficult, and we linearize the problem around constant a. We study and solve numerically the linea...
متن کاملThe Inverse Resonance Problem for Cmv Operators
We consider the class of CMV operators with super-exponentially decaying Verblunsky coefficients. For these we define the concept of a resonance. Then we prove the existence of Jost solutions and a uniqueness theorem for the inverse resonance problem: Given the location of all resonances, taking multiplicities into account, the Verblunsky coefficients are uniquely determined.
متن کاملThe Inverse Resonance Problem for Hermite Operators
In this paper the inverse resonance problem for the Hermite operator is investigated. The Hermite operator H = a + a∗ + b with the creation operator a, the annihilation operator a∗, and a finitely supported multiplication operator b, is an unbounded operator on `(N0) having finitely many eigenvalues and infinitely many resonances (except for b = 0 when there are no eigenvalues or resonances). I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2007
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2006.03.068